V. L. Shelyuto, V. I. Glyzin, and N. T. Bubon

UDC 547.972

From the flowers of <u>Cirsium arvense</u> L. (Canada thistle), in addition to the apigenin, luteolin, 3-O-methylkaempferol, and cosmosiin obtained previously, we have isolated two flavonoid glucuronides, A and B.

Substance A,  $C_{21}H_{18}O_{11} \cdot H_2O$ , melts above 300°C,  $[\alpha]_D-119$ ° (c 0.6; formamide),  $\lambda_{max}$  270, 330 nm. The acid hydrolysis of substance A with conc. sulfuric acid and with the enzyme preparation "Avamorin" gave an aglycone  $C_{15}H_{10}O_5$  with mp 349-351°C, identified as apigenin, and glucuronic acid, identified by paper chromatography.

In order to establish the position of attachment of the glucuronic acid, the UV spectrum of substance A was taken with ionizing and complex-forming reagents. In the presence of sodium methoxide, a bathochromic shift of the maximum of the long-wave band by 58 nm was observed (free hydroxy group in position 4'). The presence of a free hydroxy group in position 5 was shown by a bathochromic shift of the maximum of the long-wave band by 62 nm with zirconium nitrate. Thus, the glucuronic acid residue can be only in position 7.

The NMR spectrum of silylated substance A (Fig. 1) showed the following signals: doublet at 7.72 ppm (2 H) (J=8.5 Hz) - 2',6'; doublet at 6.8 ppm (2 H) (J=8.5 Hz) - 3',5'; two doublets each with an intensity of one proton unit at 6.44 and 6.28 ppm (J=2.5 Hz) corresponding to protons in positions 8 and 6; a singlet at 6.42 ppm with an intensity of one proton unit due to a proton in position 3; and a doublet at 5.00 ppm with an intensity of one proton unit (J=7 Hz) corresponding to the anomeric proton of the glucuronic acid. The spin-spin coupling constant shows the  $\beta$  configuration of the link of the glucuronic acid with the aglyone. The remaining protons of the silylated glucuronic acid are represented by signals in the 3.4-3.9 ppm region (4H). The pyranose form of the glucuronic acid ring was established by comparing the molecular rotations of substance A and of known flavonoid glucuronides.

Thus, substance A is apigenin  $7-\beta$ -D-glucopyranosiduronic acid.

Substance B,  $C_{22}H_{20}O_{11}\cdot H_2O$ , mp 245-247°C,  $[\alpha]_D$ -107.1° (c 0.6; formamide),  $\lambda_{max}$  269, 335 nm. The hydrolysis of substance B gave the aglycone acacetin,  $C_{16}H_{12}O_5$ , with mp 261-263°C, identified by its UV, IR

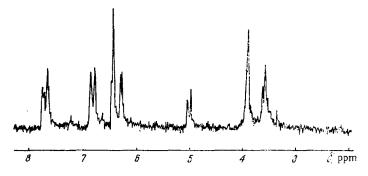



Fig. 1. NMR spectrum of silylated apigenin 7- $\beta$ -D-glucosiduronic acid.

Vitebsk Medical Institute. All-Union Institute of Medicinal Plants. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 240-241, March-April, 1972. Original article submitted September 23, 1971.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

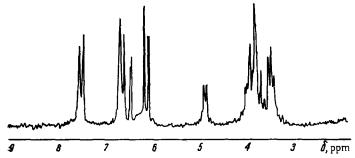



Fig. 2. NMR spectrum of silylated acacetin 7-glucosiduronic acid.

and NMR spectra and by direct comparison with an authentic sample. Glucuronic acid was identified in a hydrolysate by paper chromatography. The position of attachment of the glucuronic acid was shown by analogy with substance A.

In the NMR spectrum of silylated substance B (Fig. 2), a doublet at 7.68 ppm (2H) (J=8.5 Hz) corresponds to the 2',6' protons; a doublet at 6.80 (2H) (J=8.5 Hz) to the 3',5' protons; two doublets of one proton unit each with J=2.5 Hz at 6.60 and 6.24 ppm are due to the H-8 and H-6 protons; a singlet at 6.32 ppm is characteristic of the H-3 proton; and a doublet at 4.94 ppm (J=7 Hz) with an intensity of one proton unit relates to the anomeric proton of the  $\beta$ -glucuronic acid. Four protons of the glucuronic acid are represented by signals in the 3.3-3.9 ppm region. The pyranose form of the glucuronic acid ring was established by analogy with substance A.

The results obtained identify substance B as acacetin 7- $\beta$ -D-glucopyranosiduronic acid.